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Fig. 2. Modification of Smith-chart admittana diagram by addition of shunt susceptance j(B/ Yo) =j3.0 at DS + &,

DS f & the size of the circle, and hence the
coupling coefficient, can be either increased
or decreased, depending on the sign of the
snsceptance being added. The magnitude of
the desked susceptance is easily obtained by
fitting an admittance circle of the desired size
between the appropriate constant-conduc-
tance contours, such as the dashed lines con-
necting yt and y3 in Fig. 2, and observing the
difference, in terms of susceptance, between
the shifted admittance circle y~ and the desired
admittance circle Y3.

EXPERIMENTALRESULTSAND CONCLUSION

The experimental cavity consisted of a
three-inch section of ring-bar slow-wave struc-
ture that was mounted between transverse
shorting planes,4 and that possessed a longi-
tudinal resonance at 1090 MHz. Coupling was
achieved by direct connection of the center
conductor from a BNC terminal to a ring
near one end of the cavity.

In order to modify the coupling to this
resonant mode a single stub tuner (modified
Weinschel DS 109L) was used to pro-
duce jB/ Yo =jl.O at a position DS+0.89ha
“towards load,” i.e., the tuner was placed be-
tween the cavity and the DS position. Phys-
ically, the tuner was located within less than
& from the cavity terminal. The results are
summarized in Table I.

It is seen that by attaching the stub tuner,

~ B. KuIke, “An extended-interaction klystron: effi-
ciency and bandwidth,” Microwave lab., Stanford
University, Stanford, CMif., M.L. Rept. 1320, ch. 4,
May 1965.

TABLE I

With stub tuner
Quantity Without stub tuner set to give

jB/Yo=jl. O

Qo 111 90
Q.xt 53 22
QL 36 1s
P 2.1 4.1 measured

5.5 predicted

QL is decreased by a factor of two. The “pre-
dicted” @=5.5 was obtained by graphically
adding the shunt susceptance (assumed con-
stant) to the rotated admittance circle, as
was explained. This compared with a mea-
sured B =4.1, with the stub tuner attached.
Since both this discrepancy and the change in
QO are somewhat greater than might be ex-
pected from measurement error, one suspects
that in this case the energy stored and dissi-
pated outside the cavity was not negligible. In
subsequent measurements the setting of the
stub tuner was varied to produce a wide range
of values for Q.xt, but no further significant
change was observed in QO(Q.x+,= 49, 70, 87,
125 with Q,= 88, 86, 87, 92). The apparent
change in Qo that occurred when the stub
tuner was first inserted into the feeder line,
was, therefore, probably due to residual reflec-
tions from the tuner or its type N connectors,
rather than to excessive tuner susceptance as
one would at first expect. Clearly, the method
does afford a quick and simple way of chang-
ing the cavity loading, provided that the shunt
snsceptance (including residual reflections) is
limited to reasonably small values.

6 coupling coefficient.

Qo, Qsxt, QL internal, external, and loaded
Q.

DS detuned-short.
ZO, YO characteristic impedance, ad-

mittance of feeder line.
B shunt snsceptance.
I distance between DS and

shunt susceptance.
&. guide wavelength in feeder

line.
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The Point-Matching Method for

Interior and Exterior Two-Dimen-

sional Boundary Value Problems

There have appeared recently some papers
[1 ]-[4] on a “point-matching method” for
solving electromagnetic boundary value prob-
lems. The only attempts at justifying its use
have been qualitative, but the method is
plausible, and in some instances gives accurate
results. Nevertheless, the method is unsound,
in general, as has been pointed out by Bar-
rington [5]. It will be demonstrated, however,
that when certain symmetries are maintained,
the point-matching method is valid. These
symmetries are maintained, or nearly main-
tained, in the majority of test cases used for
“demonstrating” the validity of the method,
which explains its apparent success.1Yee [6]
and Laura [7], [8] describe the background of
the method and the motivation for its use.

A single type of electromagnetic boundary
value problem will be considered: an infinite,
perfectly conducting, cylindrical boundary of
arbitrary cross section with the (monochro-
matic) electric field parallel to the axis of the
cylindrical boundary. This type of problem is
adequate both for explaining the successes of
the point-matching method in special cases
and for displaying its inadequacy in general.
Figure 1 shows an infinite cylindrical bound-
ary C, supposed perfectly conducting, de-
scribed by the cylindrical polar coordinates r
and 0. The point P at which the field is ob-
served is described by the cylindrical polar co-
ordinates p and @ The electric field is con-
strained to be perpendicular to the paper so
that the fields are most conveniently repre-
sented by the component of the vector poten-
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I It is interesting that these symmetries are main-
tained in all of the actual calculations quoted by Yee and
Audeh [13] iu a reeent paper.
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P Now consider the interior problem posed in

R a). The conditions (3) have to be satisfied.

\

Manipulating (9) and retaining only the first
(2M+1) Fourier coefficients, and using (8),

Fig. 1. Geometry for two-dimensional electromagnetic boundary value problem.

tial perpendicular to the paper. Let V be this
component of the vector potential. Put

V(p, +) = VI(P, +) + V2(P, +) (1)

where VI represents the incident field and V.Z
represents the field radiated from C. A con-
venient and exact form for Vz is [9] (sup-
pressing the time factor exp (j~t))

V,(P, $$) =
J

F(c) Ho(’) (kR)dc (2)
c

where F is —j/4 times that component (the
only component) of the surface current den-
sity perpendicular to the paper. Two types of
problems will be considered.

a) An interior problem in which there is no
incident field and the radiated field is
confined to the inside of C. The prob-
lem is to find the cutoff wave numbers
of E-modes in a wavegnide with perim-
eter C. Thus, since the total field must
be zero on C and since the radiated
field is the only field,

VI = o, V,(r, 6) = o. (3)

In the point-matching method it is as-
sumed that the only important con-
straint is that the field should be finite
everywhere inside C so that Vx can be
meaningfully approximated by

v,(9, d) = S AJ~(kp) exp (jw$) (4)
m=—M

everywhere inside and on C. A solution
is obtained by satisfying (3) and (4) at
(2M+1) points on C.

b) An exterior problem in which a plane
wave, incident at angle #, is scattered
from C. Thus,

VI(P, b) = exp [jkp Cos (0 – *)1,

V(r-, 0) = o. (5)

In the point-matching method it is as-
sumed that the only important con-
straint is the radiation condition at in-

finity so that V, can be meaningfully
approximated by

V,(p, O) = S BJL(2) (lw) exp (jrn+) (6)

m.—M

everywhere outside and on C. A solu-
tion is obtained by satisfying (5) and
(9 at (2M+1) points on C.

The validity of the expressions (4) and (6)
will now be examined, the analysis being
based upon (2), which is exact. The addition
theorem for Bessel functions [10 ] can be used
to expand the Hankel function in (2). Thus,
for p greater and less than r, respectively,

m
V,(p > 7“,+) = x Kn@)(kP)

m=—.

. exp (.jrm$)
J

F(C) J~(kr) exp ( –@3)dC
c

.
V,(p < r, #J) = x Jm(kp)

m...

.exp Q%@) J F(C)Hmt2) (h)
c

. exp ( —jmtr)dC. (7)

Take a particular point (r, 0) on C. Denote any
other point on C by (s, u). Separate C into the
two parts, a(r) and f?(r), on whichs is less than
or greater than r, respectively. Thus,

a(r) u p(r) = c, CY(r)n B(r) = o,

a(r)
s~rin

p(r)
(8)

From (7) and (8) when the point P is on C,
which is to say, when (P, O)= (r, d),

m
V,(?-,e) = z [IW (h) j- F(c) Jm(ks)

m-—. a(,)

-exp ( –jmv)dC + Jm (kr)
J

z7(c)Hm@)(k)
!9(,)

1
.exp (–jrrw)cZC exp (jw@. (9)

gives

~ Jfi(kr) exp (jrnO) fcF(C)J~(ks)
m.-,w

.exp ( –jlrw)dC

– @M [ y~(~r) Ja(r)~(c)Jm(ks)

.exp ( —jmv)dC + ~m (kr)
f

F(c) Ym(ks)
19(r)

1
-exp ( –jmv)cZC exp (jm6) = O. (lo)

It can be seen immediately that the expansion
(4), which is used in the point-matching
method, is incomplete. To the right-hand side
of (4) should be added another summation
involving the functions YJkp). Furthermore,
the coefficients of this second expansion will
be functions of p, as can be seen from either
(7) or (10). Consequently, unless C is nearly
circular ViI cannot be meaningfully approxi-
mated in general by the right-hand side of (4)
if the coefficients An are constants. However,
there are particular instances, when C is not
nearly circular, when (4) is a meaningful ap-
proximation. Suppose that C is a curve sym-
metric about 0=0, and also that F(C) is real
and even, or pure imaginary and odd. These
conditions apply to any symmetric or anti-
symmetric mode in a waveguide with a cross
section exhibiting a plane of symmetry (in
fact, any practical waveguide of impeccable
manufacture). When these conditions apply
V,(r, o), as given by (4), is the real part of the
left-hand side of (10). Since the real part must
be zero independently of the imaginary part,
the point-matching method is valid in this
instance, which explains the successes of Yee
and Audeh [3], [4]. Now consider the exterior
problem posed in b). Conditions (5) have to
be satisfied. Expanding VI in its Fourier series
in ~, manipulating (9), using (8), and retain-
ing only the first (2A4+ 1) Fourier coefficient
gives

.exp (jvz@) = O. (11)

Comparison of (6) and (11) shows that the
quantity in the inner square bracket in (11)
must be negligible if the point-matching
method is to be valid. When C is nearly circu-
lar, as in the work of Mullin et al. [1], the
quantity in the inner square bracket is clearly
small (in fact, an estimate of the magnitude of
this quantity could be used to estimate the
accuracy of the types of calculation carried
out by Mullin et al. [1]). The point-matching
method would also be valid for problems in
which the following conditions were appli-
cable. If C is symmetric about o = O and if
F(C) is real and even, then the quantity in the
inner square bracket in(11) will cancel if ( 11)
is added to its complex conjugate. Unfortu-
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nately, these conditions seem to apply only to
a plane wave normally incident upon aninfi.
nite flat sheet. Consequently, the point-match-
ing method appears to be a meaningful ap-
proximation for nontrivial exterior boundary
value problems only if Cis nearly circular.

It is certainly easier to write down the
equations for the point-matching method than
for either the exact integral equation method
[11] or the exact extended boundary condi-
tion method of Waterman [12], both of
which can be based on (2). However, the
computational effort required to reach a solu-
tion cannot be significantly less for the point-
matchiug method, even though the exact
methods involve more work in the setting up
of the main computations (a subtle distinc-
tion which was pointed out by a reviewer).
For equal accuracy (in those instances when
the point-matching method is valid) at least
as many linear algebraic equations must be
solved simultaneously (it is the solution of
these equations which absorbs the major part
of the computational effort). Consequently, it
is suggested that the point-matching method
should be discarded in favor of either Har-
rington’s [5] proposed extension of the
method or the exact methods [11], [12].
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Computer-Graphic Analysis of

Dielectric Waveguides

The solutions to microwave problems are
often enhanced by a visual representation of
the fields, especially when the mathematical
expressions are so complex as to resist phys-
ical interpretation by themselves. The particu-
lar graphical aid which is the subject of this
correspondence is the field mapping, defined
as a family of curves drawn parallel to the
vector field being represented. Although such
diagrams have been considered to be of great
value since the early study of electrodynamics
[1], the analytical and numerical complexi-
ties of modern engineering problems have in-
hibited their use on any wide scale. However,
the current availability of digital computers,
with compatible automatic plotting equip-
ment, has made the numerical determination
and display of field mappings a very practical
adjunct to established analytical methods.
The purpose of this correspondence is to illus-
trate the utility of field mapping by displaying
the transverse electric field for the HEI1 mode
on a dielectric rod. It will be shown that the
curvature of the field lines is in the opposite
direction to that commonly assumed.

The equipment utilized in this study has
been an IBM 7094 computer in conjunction
with a Stromberg-Carlson 4020 microfilm
unit. The computer performs all the calcula-
tions required to construct the field lines and
stores the results on magnetic tape. These
computed results are then used to control
a cathode ray tube display, which is pho-
tographed and reproduced by standard
methods.

Mathematically, electric field lines in a
plane are the solution trajectories of the first-
order differential equation

dy E. (X, y)
~ = tan [.(2, y)] = -v; (1)

z

where a is the angle between the electric vec-
tor at (x, y) and the +x-axis. A first-order
numerical approximation to that trajectory
passing through a typical boundary point P,
is depicted in Fig. 1. The calculation is made
by using a first-order difference scheme, in
which the point (X,+l, yi+J is determined from
(xi, y.) according to the relation

Z,+l = x; + 6s Cos a!,

y~+l = y~ + 6s sin a, (2)

where 6s is the path increment. Although this
approximation can be refined to whatever ac-
curacy is required [2], it is generally possible
to find a path increment sufficiently small to
give smooth and accurate contours without
impractical amounts of computation.

The application to be considered in this
correspondence is the determination of the
transverse electric field for the fundamental
(HEu) mode of propagation along a dielec-
tric rod with circular cross section. This mode
is of significant interest in the analysis of di-
electric waveguides [3], dielectric rod anten-
nas [4] and more recently for its application
to fiber optics and lasers [5]. Brown and Spec-
tor [6] and Snitzer [7] studied the field con-
figuration when the slow wave phase velocity
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Fig. 1. Fkst-order difference solution for the field lines.

YI

Fig. 2. Cylindrical geometry.

is near the free space velocity (assuming the
rod to be in vacuum) and showed that in this
limiting situation the field lines in the rod be-
come straight and parallel. Although the
more general case of arbitrary dielectric con-
stant has never been accurately studied, it is
commonly assumed that the field lines ap-
proach the configuration for the TEII mode in
a circular waveguide. The apparent justifi-
cation for this conjecture is that as the wave is
slowed down, the power becomes concen-
trated in the rod in the same way as power is
contained within a metallic wavegnide. Ac-
tually the situation is not analogous, since the
fields do not vanish abruptly beyond the sur-
face of a dielectric rod, with the result that
there is always some power being transmitted
in the region outside.

The cylindrical coordinate representation
is shown in Fig. 2. The rod is assumed to have
radius a, relative perrnittivity e, and a relative
permeability of unity. As is well known, the
electromagnetic field for the HE1l mode is
derived from a linear combination of z-
directed magnetic and electric Hertz vectors
[3]. The electric field may be represented by

E = V X (e.V1) + V X (e, X vvz) (3)

where, for the field inside

(3z = ,,koz – h~

lc~ = free space wavenumber. (5)


